home *** CD-ROM | disk | FTP | other *** search
- /* idea.c - C source code for IDEA block cipher. IDEA (International Data
- * Encryption Algorithm), formerly known as IPES (Improved Proposed Encryption
- * Standard). Algorithm developed by Xuejia Lai and James L. Massey, of ETH
- * Zurich. This implementation modified and derived from original C code
- * developed by Xuejia Lai. Zero-based indexing added, names changed from IPES
- * to IDEA. CFB functions added. Random number routines added. Optimized for
- * speed 21 Oct 92 by Colin Plumb <colin@nsq.gts.org>. This code assumes that
- * each pair of 8-bit bytes comprising a 16-bit word in the key and in the
- * cipher block are externally represented with the Most Significant Byte
- * (MSB) first, regardless of internal native byte order of the target CPU. */
-
- #include "idea.h"
-
- #define min(x, y) (((x) < (y)) ? (x) : (y))
-
- #ifdef TEST
- #include <stdio.h>
- #include <time.h>
- #endif
-
- #ifdef sgi
- #define HIGHFIRST
- #endif
-
- #ifdef sun
- #define HIGHFIRST
- #define const
- #endif
-
- #define TRUE 1
- #define FALSE 0
-
- #define IDEABLOCKSIZE 8
- #define ROUNDS 8 /* Don't change this value, should be 8 */
- #define KEYLEN (6*ROUNDS+4) /* length of key schedule */
-
- #define byte unsigned char
- #define word16 unsigned short
- #define boolean int
- #define word32 unsigned long
- #define byteptr unsigned char *
-
- typedef word16 IDEAkey[KEYLEN];
-
- #ifdef IDEA32 /* Use >16-bit temporaries */
- #define low16(x) ((x) & 0xFFFF)
- typedef unsigned int uint16; /* at LEAST 16 bits, maybe more */
- #else
- #define low16(x) (x) /* this is only ever applied to uint16's */
- typedef word16 uint16;
- #endif
-
- #ifdef _GNUC_
- /* __const__ simply means there are no side effects for this function,
- * which is useful info for the gcc optimizer */
- #define CONST __const__
- #else
- #define CONST
- #endif
-
- static void en_key_idea();
- static void de_key_idea();
- static void cipher_idea();
-
- /* Multiplication, modulo (2**16)+1. Note that this code is structured like
- * this on the assumption that untaken branches are cheaper than taken
- * branches, and the compiler doesn't schedule branches. */
-
- #ifdef SMALL_CACHE
- CONST static uint16 mul(register uint16 a, register uint16 b)
- {
- register word32 p;
- if (a)
- { if (b)
- { p = (word32)a * b;
- b = low16(p);
- a = p>>16;
- return b - a + (b < a);
- }
- else
- { return 1-a;
- }
- }
- else
- { return 1-b;
- }
- }
- #endif /* SMALL_CACHE */
-
- /* Compute multiplicative inverse of x, modulo (2**16)+1, using Euclid's GCD
- * algorithm. It is unrolled twice to avoid swapping the meaning of the
- * registers each iteration; some subtracts of t have been changed to adds. */
-
- CONST static uint16 inv(x)
- uint16 x;
- {
- uint16 t0, t1;
- uint16 q, y;
- if (x <= 1)
- return x; /* 0 and 1 are self-inverse */
- t1 = 0x10001 / x; /* Since x >= 2, this fits into 16 bits */
- y = 0x10001 % x;
- if (y == 1)
- return low16(1-t1);
- t0 = 1;
- do
- { q = x / y;
- x = x % y;
- t0 += q * t1;
- if (x == 1)
- return t0;
- q = y / x;
- y = y % x;
- t1 += q * t0;
- } while (y != 1);
- return low16(1-t1);
- }
-
- /* Compute IDEA encryption subkeys Z */
-
- static void en_key_idea(userkey, Z)
- word16 *userkey; word16 *Z;
- {
- int i,j;
- /* shifts */
- for (j=0; j<8; j++)
- Z[j] = *userkey++;
- for (i=0; j<KEYLEN; j++)
- { i++;
- Z[i+7] = Z[i & 7] << 9 | Z[i+1 & 7] >> 7;
- Z += i & 8;
- i &= 7;
- }
- }
-
- /* Compute IDEA decryption subkeys DK from encryption subkeys Z */
- /* Note: these buffers *may* overlap! */
-
- static void de_key_idea(Z, DK)
- IDEAkey Z; IDEAkey DK;
- {
- int j;
- uint16 t1, t2, t3;
- IDEAkey T;
- word16 *p = T + KEYLEN;
- t1 = inv(*Z++);
- t2 = -*Z++;
- t3 = -*Z++;
- *--p = inv(*Z++);
- *--p = t3;
- *--p = t2;
- *--p = t1;
- for (j = 1; j < ROUNDS; j++)
- {
- t1 = *Z++;
- *--p = *Z++;
- *--p = t1;
- t1 = inv(*Z++);
- t2 = -*Z++;
- t3 = -*Z++;
- *--p = inv(*Z++);
- *--p = t2;
- *--p = t3;
- *--p = t1;
- }
- t1 = *Z++;
- *--p = *Z++;
- *--p = t1;
- t1 = inv(*Z++);
- t2 = -*Z++;
- t3 = -*Z++;
- *--p = inv(*Z++);
- *--p = t3;
- *--p = t2;
- *--p = t1;
- /* Copy and destroy temp copy */
- for (j = 0, p = T; j < KEYLEN; j++)
- {
- *DK++ = *p;
- *p++ = 0;
- }
- }
-
- /* MUL(x,y) computes x = x*y, modulo 0x10001. Requires two temps, t16 and t32.
- * x must me a side-effect-free lvalue. y may be anything, but unlike x, must
- * be strictly 16 bits even if low16() is #defined. All of these are
- * equivalent; see which is faster on your machine. */
-
- #ifdef SMALL_CACHE
- #define MUL(x,y) (x = mul(low16(x),y))
- #else
- #ifdef AVOID_JUMPS
- #define MUL(x,y) (x = low16(x-1), t16 = low16((y)-1), \
- t32 = (word32)x*t16+x+t16+1, x = low16(t32), \
- t16 = t32>>16, x = x-t16+(x<t16) )
- #else
- #define MUL(x,y) ((t16 = (y)) ? (x=low16(x)) ? \
- t32 = (word32)x*t16, x = low16(t32), t16 = t32>>16, \
- x = x-t16+(x<t16) : \
- (x = 1-t16) : (x = 1-x))
- #endif
- #endif
-
- /* IDEA encryption/decryption algorithm . In/out can be the same buffer */
-
- static void cipher_idea(in, out, Z)
- word16 in[4]; word16 out[4]; register CONST IDEAkey Z;
- {
- register uint16 x1, x2, x3, x4, t1, t2;
- register uint16 t16;
- register word32 t32;
- int r = ROUNDS;
- x1 = *in++; x2 = *in++;
- x3 = *in++; x4 = *in;
- do
- {
- MUL(x1,*Z++);
- x2 += *Z++;
- x3 += *Z++;
- MUL(x4, *Z++);
- t2 = x1^x3;
- MUL(t2, *Z++);
- t1 = t2 + (x2^x4);
- MUL(t1, *Z++);
- t2 = t1+t2;
- x1 ^= t1;
- x4 ^= t2;
- t2 ^= x2;
- x2 = x3^t1;
- x3 = t2;
- } while (--r);
- MUL(x1, *Z++);
- *out++ = x1;
- *out++ = x3 + *Z++;
- *out++ = x2 + *Z++;
- MUL(x4, *Z);
- *out = x4;
- }
-
- #ifdef TEST
-
- /* Number of Kbytes of test data to encrypt. Defaults to 1 MByte. */
-
- #ifndef KBYTES
- #define KBYTES 1024
- #endif
-
- #ifndef CLOCKS_PER_SEC
- #define CLOCKS_PER_SEC 1000000
- #endif
-
- int main()
- { /* Test driver for IDEA cipher */
- int i, j, k;
- IDEAkey Z, DK;
- word16 XX[4], TT[4], YY[4];
- word16 userkey[8];
- clock_t start, end;
- long l;
-
- /* Make a sample user key for testing... */
-
- for(i=0; i<8; i++)
- userkey[i] = i+1;
-
- /* Compute encryption subkeys from user key... */
-
- en_key_idea(userkey,Z);
- printf("\nEncryption key subblocks: ");
- for(j=0; j<ROUNDS+1; j++)
- {
- printf("\nround %d: ", j+1);
- if (j==ROUNDS)
- for(i=0; i<4; i++)
- printf(" %6u", Z[j*6+i]);
- else
- for(i=0; i<6; i++)
- printf(" %6u", Z[j*6+i]);
- }
-
- /* Compute decryption subkeys from encryption subkeys... */
-
- de_key_idea(Z,DK);
- printf("\nDecryption key subblocks: ");
- for(j=0; j<ROUNDS+1; j++)
- {
- printf("\nround %d: ", j+1);
- if (j==ROUNDS)
- for(i=0; i<4; i++)
- printf(" %6u", DK[j*6+i]);
- else
- for(i=0; i<6; i++)
- printf(" %6u", DK[j*6+i]);
- }
-
- /* Make a sample plaintext pattern for testing... */
-
- for (k=0; k<4; k++)
- XX[k] = k;
- printf("\n Encrypting %d KBytes (%ld blocks)...", KBYTES, KBYTES*64l);
- fflush(stdout);
- start = clock();
- cipher_idea(XX,YY,Z); /* encrypt plaintext XX, making YY */
- for (l = 1; l < 64*KBYTES; l++)
- cipher_idea(YY,YY,Z); /* repeated encryption */
- cipher_idea(YY,TT,DK); /* decrypt ciphertext YY, making TT */
- for (l = 1; l < 64*KBYTES; l++)
- cipher_idea(TT,TT,DK); /* repeated decryption */
- end = clock() - start;
- l = end * 1000. / CLOCKS_PER_SEC + 1;
- i = l/1000;
- j = l%1000;
- l = KBYTES * 1024. * CLOCKS_PER_SEC / end;
-
- printf("%d.%03d seconds = %ld bytes per second\n", i, j, l);
- printf("\nX %6u %6u %6u %6u \n",
- XX[0], XX[1], XX[2], XX[3]);
- printf("Y %6u %6u %6u %6u \n",
- YY[0], YY[1], YY[2], YY[3]);
- printf("T %6u %6u %6u %6u \n",
- TT[0], TT[1], TT[2], TT[3]);
- /* Now decrypted TT should be same as original XX */
- for (k=0; k<4; k++)
- if (TT[k] != XX[k])
- {
- printf("\n\07Error! Noninvertable encryption.\n");
- exit(-1); /* error exit */
- }
- printf("\nNormal exit.\n");
- return 0;
- }
- #endif /* TEST */
-
- /* xorbuf - change buffer via xor with random mask block. Used for Cipher
- * Feedback (CFB) or Cipher Block Chaining (CBC) modes of encryption. Can be
- * applied for any block encryption algorithm, with any block size, such as
- * the DES or the IDEA cipher. */
-
- static void xorbuf(buf, mask, count)
- register byteptr buf; register byteptr mask; register int count;
- /* count must be > 0 */
- {
- if (count)
- do
- *buf++ ^= *mask++;
- while (--count);
- } /* xorbuf */
-
- /* cfbshift - shift bytes into IV for CFB input. Used only for Cipher Feedback
- * (CFB) mode of encryption. Can be applied for any block encryption algorithm
- * with any block size, such as the DES or the IDEA cipher. */
-
- static void cfbshift(iv, buf, count, blocksize)
- register byteptr iv; register byteptr buf;
- register int count; int blocksize;
- /* iv is initialization vector. buf is buffer pointer. count is number of bytes
- * to shift in...must be > 0. blocksize is 8 bytes for DES or IDEA ciphers. */
- {
- int retained;
- if (count)
- {
- retained = blocksize-count; /* number bytes in iv to retain */
- /* left-shift retained bytes of IV over by count bytes to make room */
- while (retained--)
- {
- *iv = *(iv+count);
- iv++;
- }
- /* now copy count bytes from buf to shifted tail of IV */
- do *iv++ = *buf++;
- while (--count);
- }
- } /* cfbshift */
-
- /* Key schedules for IDEA encryption and decryption */
-
- static IDEAkey Z, DK;
- static word16 *iv_idea; /* pointer to IV for CFB or CBC */
- static boolean cfb_dc_idea; /* TRUE iff CFB decrypting */
-
- /* initkey_idea initializes IDEA for ECB mode operations */
-
- void initkey_idea(key, decryp)
- byte key[16]; boolean decryp;
- {
- word16 userkey[8]; /* IDEA key is 16 bytes long */
- int i;
- /* Assume each pair of bytes comprising a word is ordered MSB-first. */
- for (i=0; i<8; i++)
- {
- userkey[i] = (key[0]<<8) + key[1];
- key++; key++;
- }
- en_key_idea(userkey,Z);
- if (decryp)
- {
- de_key_idea(Z,Z); /* compute inverse key schedule DK */
- }
- for (i=0; i<8; i++)/* Erase dangerous traces */
- userkey[i] = 0;
- } /* initkey_idea */
-
- /* Run a 64-bit block thru IDEA in ECB (Electronic Code Book) mode, using the
- * currently selected key schedule. */
-
- void idea_ecb(inbuf, outbuf)
- word16 *inbuf; word16 *outbuf;
- {
- /* Assume each pair of bytes comprising a word is ordered MSB-first. */
- #ifndef HIGHFIRST /* If this is a least-significant-byte-first CPU */
- word16 x;
- /* Invert the byte order for each 16-bit word for internal use. */
- x = inbuf[0]; outbuf[0] = x >> 8 | x << 8;
- x = inbuf[1]; outbuf[1] = x >> 8 | x << 8;
- x = inbuf[2]; outbuf[2] = x >> 8 | x << 8;
- x = inbuf[3]; outbuf[3] = x >> 8 | x << 8;
- cipher_idea(outbuf, outbuf, Z);
- x = outbuf[0]; outbuf[0] = x >> 8 | x << 8;
- x = outbuf[1]; outbuf[1] = x >> 8 | x << 8;
- x = outbuf[2]; outbuf[2] = x >> 8 | x << 8;
- x = outbuf[3]; outbuf[3] = x >> 8 | x << 8;
- #else /* HIGHFIRST */
- /* Byte order for internal and external representations is the same. */
- cipher_idea(inbuf, outbuf, Z);
- #endif /* HIGHFIRST */
- } /* idea_ecb */
-
- /* initcfb - Initializes IDEA key schedule tables via key; initializes Cipher
- * Feedback mode IV. References context variables cfb_dc_idea and iv_idea. */
-
- void initcfb_idea(iv0, key, decryp)
- word16 iv0[4]; byte key[16]; boolean decryp;
- /* iv0 is copied to global iv_idea, buffer will be destroyed by ideacfb. key is
- * pointer to key buffer. decryp is TRUE if decrypting, FALSE if encrypting. */
- {
- iv_idea = iv0;
- cfb_dc_idea = decryp;
- initkey_idea(key,FALSE);
- }
-
- /* ideacfb - encipher a buffer with IDEA enciphering algorithm, using Cipher
- * Feedback (CFB) mode. Assumes initcfb_idea has already been called.
- * References context variables cfb_dc_idea and iv_idea. */
-
- void ideacfb(buf, count)
- byteptr buf; int count;
- /* buf is input, output buffer, may be more than 1 block. count is byte count
- * is byte count of buffer. May be > IDEABLOCKSIZE. */
- {
- int chunksize; /* smaller of count, IDEABLOCKSIZE */
- word16 temp[IDEABLOCKSIZE/2];
-
- while ((chunksize = min(count,IDEABLOCKSIZE)) > 0)
- {
- idea_ecb(iv_idea,temp); /* encrypt iv_idea, making temp. */
- if (cfb_dc_idea)/* buf is ciphertext */
- /* shift in ciphertext to IV... */
- cfbshift((byte *)iv_idea,buf,chunksize,IDEABLOCKSIZE);
- /* convert buf via xor */
- xorbuf(buf,(byte *)temp,chunksize);/* buf has enciphered output */
- if (!cfb_dc_idea)/* buf was plaintext, is now ciphertext */
- /* shift in ciphertext to IV... */
- cfbshift((byte *)iv_idea,buf,chunksize,IDEABLOCKSIZE);
- count -= chunksize;
- buf += chunksize;
- }
- }
-
- /* close_idea function erases all the key schedule information when we are
- * done with a set of operations for a particular IDEA key context. This is to
- * prevent any sensitive data from being left around in memory. */
-
- void close_idea() /* erase current key schedule tables */
- {
- short i;
- for (i = 0; i < KEYLEN; i++)
- Z[i] = 0;
- } /* close_idea() */
-
- /* These buffers are used by init_idearand, idearand, and close_idearand. */
- static word16 dtbuf_idea[4] = {0}; /* buffer for enciphered timestamp */
- static word16 randseed_idea[4] = {0}; /* seed for IDEA random # generator */
- static word16 randbuf_idea[4] = {0}; /* buffer for IDEA random # generator */
- static byte randbuf_idea_counter = 0; /* random bytes left in randbuf_idea */
-
- /* init_idearand - initialize idearand, IDEA random number generator. Used for
- * generating cryptographically strong random numbers. Much of design comes
- * from Appendix C of ANSI X9.17. key is pointer to IDEA key buffer. seed is
- * pointer to random number seed buffer. tstamp is a 32-bit timestamp */
-
- void init_idearand(key, seed, tstamp)
- byte key[16]; byte seed[8]; word32 tstamp;
- {
- int i;
- initkey_idea(key, FALSE); /* initialize IDEA */
- for (i=0; i<4; i++) /* capture timestamp material */
- { dtbuf_idea[i] = tstamp; /* get bottom word */
- tstamp = tstamp >> 16; /* drop bottom word */
- /* tstamp has only 4 bytes-- last 4 bytes will always be 0 */
- }
- /* Start with enciphered timestamp: */
- idea_ecb(dtbuf_idea,dtbuf_idea);
- /* initialize seed material */
- for (i=0; i<8; i++)
- ((byte *)randseed_idea)[i] = seed[i];
- randbuf_idea_counter = 0; /* # of random bytes left in randbuf_idea */
- }
-
- /* idearand - IDEA pseudo-random number generator. Used for generating
- * cryptographically strong random numbers. Much of design comes from Appendix
- * C of ANSI X9.17. */
-
- byte idearand()
- {
- int i;
- if (randbuf_idea_counter==0) /* if random buffer is spent...*/
- { /* Combine enciphered timestamp with seed material: */
- for (i=0; i<4; i++)
- randseed_idea[i] ^= dtbuf_idea[i];
- idea_ecb(randseed_idea,randbuf_idea); /* fill new block */
- /* Compute new seed vector: */
- for (i=0; i<4; i++)
- randseed_idea[i] = randbuf_idea[i] ^ dtbuf_idea[i];
- idea_ecb(randseed_idea,randseed_idea); /* fill new seed */
- randbuf_idea_counter = 8; /* reset counter for full buffer */
- }
- /* Take a byte from randbuf_idea: */
- return(((byte *)randbuf_idea)[--randbuf_idea_counter]);
- }
-
- void close_idearand()
- { /* Erase random IDEA buffers and wipe out IDEA key info */
- int i;
- for (i=0; i<4; i++)
- { randbuf_idea[i] = 0;
- randseed_idea[i] = 0;
- dtbuf_idea[i] = 0;
- }
- close_idea();/* erase current key schedule tables */
- }
-